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Abstract: The question of how to stabilize all of the modulus fields coming from com-
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for string cosmology. Here, in the simple example of a toroidal compactification, we study

the dynamics of the moduli fields corresponding to the size and shape of the torus along

with the ambient flux. It is known that a string gas containing states with non-vanishing

winding and momentum numbers can stabilize the volume modulus. In this paper we show

that a gas of string modes which becomes massless at the self-dual radius can stabilize the

shape moduli.
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1. Introduction

Critical superstring theory [1, 2] is consistent only in ten space-time dimensions. One pos-

sibility to restore consistency with our observed four-dimensional space-time is to assume

that the six spatial dimensions which are not seen experimentally are compactified on a

manifold with string-scale volume. The size and shape of the compact internal manifold,

along with any flux in the compactified space, can be parametrized in terms of scalar fields

on the observed four-dimensional space-time. These are the string theoretic moduli fields.

In order to avoid conflicts with observations, there must be a mechanism which fixes these

moduli fields.

In the context of the low energy effective field theory coming from string theory, it

has recently been shown [3] (see also [4]) that the presence of fluxes can stabilize many

but not all of the moduli fields. In particular, all of the complex structure moduli can

be stabilized, which includes the shape associated with the internal manifold. It has,

however, proven very difficult to stabilize the total volume of the internal manifold using

this framework. On the other hand, consider “string gas cosmology,” an approach to

superstring cosmology pioneered in [5] (see also [6]) and further developed in [7], in which

a gas of strings containing, in addition to the usual effective field theory degrees of freedom,

string winding and momentum modes is coupled to a background space-time described by

dilaton gravity. It has recently been shown that this combined action of string winding

and momentum modes can stabilize the radion modulus field at the self-dual radius [8, 9].

Thus, it is reasonable to conjecture that it might be possible to stabilize all of the string

moduli fields by including fluxes in the analysis.
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In this paper, we consider a very simple toy model with moduli associated with a

two dimensional toroidal compactification with flux. By populating the torus with a gas

of string modes which are massless at an enhanced symmetry point — we choose the

rectangular torus of string length to be this point — we find that all of the moduli in the

problem can be stabilized dynamically with the exception of the dilaton which we fix by

hand in this paper.1 We develop a way to incorporate strings winding all internal directions

(with the internal momenta consistent with T-duality). Moduli stabilization is achieved at

the classical level with extended winding strings and momentum modes alone. We analyse

the quantum fluctuation of the system and show that both the shape moduli of the torus

as well as the flux moduli are stabilized dynamically. This is in contrast to the analyses

done in the context of the low energy field theory action coming from supergravity. Here

we study the fully time-dependent equations and not just the effective potential. Dilaton

stabilization using tools of string gas cosmology will be studied in a followup paper.

2. Background and toy model

Before turning to a review of string gas cosmology and to the formulation of the toy model

which we will study, let us briefly summarize the status of moduli stabilization in the field

theory limit of string theory, the limit which is most often used as the starting point for

“string cosmology” (e.g. the papers following up on [10, 11] which study the construction

of metastable de Sitter solutions and of inflationary solutions to the equations of motion).

As was realized in [3] (see also earlier work in [12]), the presence of fluxes can stabilize the

“shape moduli” of string compactifications. If the internal manifold is a torus, then the

angles of the torus are shape moduli, as are the ratios of the radii of the individual toroidal

directions. A heuristic argument for the stabilization of the angle modulus is as follows [13]:

for fixed values of the two radii of the torus, the flux energy will be minimal if the volume

is largest, i.e. if the angle between the two cycles of the torus is π/2. Similarly, for fixed

volume of the torus, the flux energy will be minimal if the two cycles have identical length.

Hence, the other shape modulus of the torus will also be stabilized by the flux. On the other

hand, the same argument would lead to the total volume of the torus increasing without

bound. Fluxes alone cannot stabilize the volume modulus. In the original constructions

of [3] the dependence on the internal volume drops out of the potential all together, leading

to so-called no-scale models. This situation was improved in [10], where non-perturbative

corrections were invoked. However, as discussed in [14], it is not enough to find a local

minimum of the potential, one must also ensure that the moduli do not overshoot such

a minimum. As observed in [15], this remains a challenge for the KKLT models where

the non-perturbative potential is generically very shallow. Progress is being made on the

former issue, and constructions which also stabilize the volume modulus have recently been

obtained making use of additional inputs (see e.g. [16]). The latter problem of dynamical

stabilization still remains largely neglected.

1The dilaton can be likewise trapped at a particular value by turning on both Neveu-Schwarz and

Ramond-Ramond fluxes. Since we are interested in the stabilization of the complex moduli in this paper,

we turn on only one kind of flux for simplicity and thus have to fix the dilaton by hand.
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“String gas cosmology” is an approach to combining string theory and cosmology which

makes crucial use of degrees of freedom and symmetries which are specific to string theory

(as opposed to point particle field theory). The key degrees of freedom are string winding

modes, and the new symmetry is target space duality (T-duality). The background space-

time is described in terms of dilaton gravity and matter is taken to be a gas of strings

(branes can also be included [17]) containing all degrees of freedom which are energetically

allowed. It is assumed that the background space contains stable cycles (generalizations

were discussed in [18]). For simplicity, space is often taken to be the nine-dimensional torus

T 9. The initial conditions are chosen to correspond to a hot small universe. Specifically, all

spatial dimensions are of string scale. In the absence of string interactions, the combination

of string momentum and winding modes keeps all spatial dimensions stabilized at the self-

dual radius (R = 1 in string units, where R is the radius of each of the tori). The momentum

modes whose energies are quantized in integers of 1/R prevent space from contracting to

a singularity while the winding modes whose energies are quantized in units of R prevent

space from expanding without bound. Thus, string gas cosmology provides a nonsingular

cosmological model.2

As argued in [5], string intersections will not allow the disappearance of winding num-

ber in more than three spatial dimensions (in higher dimensions the intersection probability

of string world sheets vanishes), assuming that the net winding number density vanishes.

Numerical support for this argument was provided in [22]. The evolution of the three large

spatial dimensions in string gas cosmology was studied in detail in [23], demonstrating

that three spatial dimensions can indeed become large (see [24] for some caveats). Thus,

another major success of string gas cosmology is that it has the potential to explain why

there are only three large spatial dimensions.

Once the three large spatial dimensions are expanding, the combined action of the

string winding and momentum modes stabilizes the radii Ri of all other tori to the self-

dual radius [8]. If the value of Ri for some i = 4, . . . , 9 starts off at a value different from the

self-dual radius, it will perform damped oscillations about the self-dual radius, the damping

term coming from the expansion of the three large dimensions. The dilaton, however, is

not yet stabilized. How to stabilize the dilaton is in fact one of the major challenges for

string gas cosmology (see e.g. [25] for a discussion). A second major challenge is the flatness

problem — how to make the three large spatial dimensions (which begin at a temperature

close to the string scale with string size) sufficiently large to contain our observed universe.

Let us, for the moment, assume that the dilaton has been stabilized. After the time of

stabilization, the background dynamics is described by the Einstein equations coupled to

the string gas. In this context, it has been shown [9] that the radii of the extra dimensions

which are still wrapped with winding strings remains stabilized at the self-dual radius.

Crucial to the analysis of [9] is the inclusion of states with both winding and momentum

quantum numbers which become massless at the self-dual radius (see also [26, 27] and in

a different context [28] for a discussion of these states).

2For further works on string gas cosmology see [19]. It is important to note that the conclusions depend

crucially on having fundamental strings or 1-branes in the spectrum of states, and thus might not extend

to the 11-d supergravity corner of the M-theory space [20] — but see [21].
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These results imply that string gas cosmology has the potential to stabilize the volume

modulus, the one modulus which has proven problematic to stabilize in the context of the

effective field theory limit of string theory. Since string gases stabilize each Ri at the self-

dual radius, the shape moduli corresponding to the ratios of Ri’s are also automatically

stabilized. On the other hand, string gas cosmology to date has not addressed the issue

of the stabilization of the shape moduli which correspond to the angles of a torus nor the

moduli associated with flux.

However, the same heuristic arguments (see [13] for a recent review) which indicate

that fluxes can stabilize the shape moduli of string compactifications also apply in the

context of string gas cosmology. Thus, what we do in this paper is to add fluxes to the

existing framework of string gas cosmology. We study the simplest toy model in which

one angle and flux modulus are free. Our results show that these moduli are indeed

fixed by the string gas carrying nonzero flux. Thus, merging string gas cosmology with

fluxes appears to lead to the dynamical fixing of all moduli resulting from the string

compactification.

After this brief review of string gas cosmology and why we expect that by introducing

fluxes into the scenario one will be able to stabilize all of the moduli fields, we will turn to

the formulation of the toy model in which we will study moduli stabilization. Our starting

point is Type II superstring theory on the background manifold

M = R× T 9 , (2.1)

where T 9 is a nine-dimensional spatial torus. The radii of the individual toroidal directions

are denoted by Ri. The background fields are the space-time metric GMN , the dilaton

φ, and the antisymmetric tensor field BMN . These are the fields which are massless in

perturbative superstring theory (see [1] for a review). The equations of motion are the

string β-functional and will be discussed in the next section.

The starting point of string gas cosmology is to couple the background fields to a matter

sector consisting of all string degrees of freedom treated in the ideal gas (i.e. homogeneous)

approximation. Initial conditions are chosen to correspond to an isotropic string-scale

universe, i.e. Ri = R = 1 in string units. Following the arguments of [5, 23] we assume that

three of the spatial dimensions become large since in those dimensions the winding modes

can annihilate. Previous work has shown that the combined action of string winding and

momentum modes will stabilize the other radii at the self-dual radius.

The background contains many moduli fields: the radii Ri of the individual tori, the

angles θij between the i’th and j’th toroidal direction, the flux on the torus Bij, and the

dilaton. As discussed above, string gas cosmology without fluxes leads to a stabilization of

the overall volume and of the ratio of radii. Thus, the moduli to focus on are the angles

θij , the flux Bij , and the dilaton.

In the absence of string interactions (intersections), all spatial dimensions remain small.

The self-dual field configuration in this case also corresponds to a fixed dilaton. Thus, the

only moduli left to worry about are the angles and fluxes. It is sufficient to focus on

one particular angle and flux. Although easily generalizable, for simplicity we will study
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compactifications of the form R
1,3 × T 2 with metric

ds2 = −(dx0)2 + (d~x)2 + Gmndxmdxn, (2.2)

where x0 ≡ t is the physical time. We want to focus on the dynamics associated with the

T 2 compactification manifold, so we take Minkowski space as the solution for the “large”

dimensions which represents a solution of the equations of motion ignoring flux in the large

dimensions (this is easily generalized). It will prove useful to introduce Greek indices to

indicate time along with the compact coordinates, i.e. xµ = (t, xm). The metric of T 2 is

parameterized by

Gmn =

(

R2 R2 sin θ(t)

R2 sin θ(t) R2

)

(2.3)

where θ is the angle of the torus (θ = 0 corresponds to a rectangular torus). Note that we

are using the dimensionful metric for the torus, so the two coordinates, xm (which we will

later denote by x and y), run from 0 to 2π. We turn on flux on the T 2 associated with the

antisymmetric tensor field Bmn given by

Bmn =

(

0 b(t)

−b(t) 0

)

(2.4)

In this toy model, the moduli fields to be determined will be the angle θ and flux b(t) with

the radion moduli fixed by hand at the value which correspond to the T-dual symmetry

point. We wish to study small fluctuations about θ = 0 and b = 0 to demonstrate the

stability of this point in the presence of a string gas with flux.

3. The equations of motion

Consistency of the string sigma model requires Weyl invariance at the quantum level which

in turn implies the vanishing of the β-functionals of the string fields, namely of the metric

Gµν , the rank-two tensor gauge potential Bµν , and the dilaton φ [29]. For a constant

dilaton background they become:

βG
µν = Rµν +

1

4
HµκσH κσ

ν (3.1)

βB
µν = e−2φDκHκµν (3.2)

βφ =
D − 26

6α′
+ R +

1

12
HκµνH

κµν . (3.3)

Here, Rµν is the Ricci tensor, R the Ricci scalar, Dκ denotes the covariant derivative, Hµκσ

is the field strength of Bµν , D is the number of space-time dimensions, and α′ is the string

Regge slope parameter.3 In the presence of matter the β-functionals no longer vanish.

They are determined by the matter sources, specifically by the stress-energy tensor T µ
ν and

by the current Jµν of matter.

3We follow the conventions in Green, Schwarz and Witten, chapter 3.
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The Einstein equations in the string frame are obtained by combining the β-functions

(3.1) and (3.3) in the following way:

βG
µν − 1

2
Gµνβφ = e−2φTµν , (3.4)

where Tµν is measured in the string frame. Taking the trace of the Einstein equations one

obtains one more equation:

− 1

2
R +

1

8
H2 +

3

2
c = e−2φT µ

µ (3.5)

which is different from naıvely setting βφ = e−2φT µ
µ .

The flux obeys a Maxwell-like equation given by

DκHκµν = Jµν (3.6)

where the current Jµν is determined by varying the matter action Smatter with respect to

Bµν

Jµν =
−2√
−GD

∂Smatter

∂Bµν
, (3.7)

where GD denotes the determinant of the full space-time metric. We denote the components

of Tµν by

Tµν =







ε 0 0

0 p τ

0 τ p






(3.8)

where ε is the energy density and p the pressure (density). In the presence of a nontrivial

angle modulus, we must add an off-diagonal component τ in the spatial part of Tµν for

consistency.

Plugging our ansatz for the metric into the Einstein equations (3.4), we obtain com-

ponent by component the results

tt : −1

4
θ̇2 − 1

2
c +

ḃ2

4G
= e−2φε (3.9)

xx : −Sθ

Cθ
θ̈ +

1

4
θ̇2 +

1

2
c − ḃ2

4G
=

e−2φ

R2
p (3.10)

xy : −1

2
(
1 + S2

θ

SθCθ
)θ̈ +

1

4
θ̇2 +

1

2
c − ḃ2

4G
=

e−2φ

R2Sθ
τ (3.11)

where we have denoted c ≡ 26−D
6α′ . To shorten the expressions, we have used Sθ ≡ sin θ and

Cθ ≡ cos θ. From these equations one can derive a consistency condition:

(1 + S2
θ )p − 2τSθ + εR2C2

θ = 0 . (3.12)

– 6 –



J
H
E
P
0
5
(
2
0
0
6
)
0
2
5

4. Adding matter and fluxes

We proceed to compute the source terms for the Einstein equations. We are following

the usual approach in string gas cosmology (first used in [7]) of treating the string matter

sources as an ideal gas characterized by a homogeneous energy-momentum tensor. In string

gas cosmology it is crucial to consider situations in which the winding strings fall out of

thermal equilibrium [5]. Hence, we must use the internal energy of the system instead of

the one-loop free energy as the string-matter source. We will consider a gas of strings with

specified momentum and winding numbers, plus a homogeneous flux. We will denote the

number density of strings by ρ (not to be confused with an energy density for which we

use the symbol ε).

The internal energy, denoted by E, can be obtained from one of the Virasoro constraints

(see appendix (A.7)) — the lack of dynamics for the world sheet metric requires the world-

sheet stress tensor of the string to be identically zero. Here we will simply state the result,

with a detailed derivation given in the appendix. The energy of a string in the presence of

a non-trivial B-field is given by

E2 =

∫

2π

0

dσ
[

Gmnpmpn + GmnX́mX́n − 2pnBnpX́
p + GnpBpqX́

qBnmX́m
]

+ N + Ñ − 2 (4.1)

where m,n = 1, 2 refer to the compactification manifold T 2 and the integral runs along the

length of the string. The right- and left-handed oscillatory modes are denoted N and Ñ ,

respectively, pm = Gmlnl −Bm
l ωl, and nl and ωl are the momentum and winding numbers

resulting from the compactness of the torus T 2. In the ideal gas approximation, we take

the matter contribution to the action to be

Smatter = ρ

∫

√

−GDE, (4.2)

where we recall that ρ is the number density of strings. From this we obtain the stress-

energy tensor Tµν , and the string current Jµν :

Tµνρ−1 = −EGµν +
1

E

∂E2

∂Gµν
(4.3)

Jµνρ−1 =
1

E

∂E2

∂Bµν
(4.4)

The values of the string quantum numbers are constrained by the second Virasoro

constraint (see appendix (A.7)), namely the level matching condition:

niω
i = Ñ − N . (4.5)

Among the states that obey this condition, there are preferred states, which are massless

at the self-dual radius (and in the absence of flux). These have quantum numbers given by

4(N − 1) + 〈n + w,n + w〉 = 0 , (4.6)

– 7 –
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where 〈 , 〉 in the second term indicates a scalar product, and n and w are vectors with

components ni and wi, respectively. These states will dominate the ensemble of string

states if the initial conditions are set up in a thermal-like state. We will focus on the

contribution of states with N = 1, Ñ = 0 and ni = −wi = ±1. We take all strings to have

the same momentum and winding quantum numbers in a T-dual ensemble. With equal

probability, we will have any of the following possibilities

n1 ω1 n2 ω2

1 −1 1 −1

−1 1 1 −1

1 −1 −1 1

−1 1 −1 1

(4.7)

Summing over these states, the average internal energy of the system becomes:

〈E2〉 =
2

R2 cos2 θ
+ 2R2 +

b2

R4 cos4 θ
+ 2N . (4.8)

(Note that if we had only kept a subset of these states, we would have introduced by hand

an asymmetry and obtained terms of order θ in the expression for the internal energy.)

From this one finds the average contribution of the strings to the flux,

〈Jxy〉 = −〈Jyx〉 =
R2

E
b(t),

〈Jxx〉 = 〈Jyy〉 = 0 (4.9)

5. Analysis

A rectangular torus (θ = 0) with R = 1 (self-dual radius) is a solution of the equations of

motion for fixed dilaton and vanishing flux. We wish to study linear fluctuation around

θ = 0 and b = 0 and show that the solution is a stable fixed point. To do this, it is

sufficient to expand the expression for internal energy (4.8) to second order in θ and to

drop all higher order terms. We obtain

E2 =
2

R2
(1 + θ2) + 2R2 +

b2

R4
(1 + 2θ2 + · · ·) + 2N (5.1)

In this limit the expressions for the stress-energy tensor Tµν and the string source Jµν

simplify:

Txx = Tyy = −E +
1

E
(2b2 + (2 + 4b2)θ2) (5.2)

Txy = −E sin θ +
4

E
(1 + b2)θ (5.3)

Jxy =
1

E
b . (5.4)

We have set R = 1, the self-dual radius.

– 8 –
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Inserting these results for the energy-momentum tensor into (3.11) and (3.9) we obtain

xy : −1

2

(

1 + sin2 θ

sin θ cos θ

)

θ̈ +
1

4
θ̇2 +

1

2
c − ḃ2

4G

= e−2φ

(

−E sin θ +
4

E
(1 + b2)

)

(5.5)

and

tt : − 1

4
θ̇2 − 1

2
c +

ḃ2

4G
= e−2φE (5.6)

The dependence on ḃ and on c can be removed by combining the two above formulas,

yielding the following equation of motion for θ

θ̈ + 8(1 + b2)K− 1

2 e−2φθ = 0 , (5.7)

where K ≡ 4+b2 +2N . This is the equation for a stable harmonic oscillator. The restoring

force receives contributions from both the momentum modes and the flux. This is because

they both prefer the torus to be at maximum volume, that is at θ = 0. The xx-equation

and yy-equation are satisfied at the classical level and the lowest order of perturbations is

quadratic, which we ignore.

Now let us turn our attention to the equation of motion for the flux (3.6) with source

given by (5.4)

b̈ +
sin θ

cos θ
θ̇ḃ = −Jxy (5.8)

which is satisfied by the classical values of the fields. We now study the quantum fluctua-

tion. At linear level the equation becomes:

b̈ + (4 + 2N)−
1

2 b = 0 . (5.9)

In other words the flux also performs harmonic oscillations about the classical value, b = 0.

This is consistent with the results of [32] and [33] which have studied time-dependent

solutions in the context of the low energy effective field theory actions and found that the

only solution for b = const consistent with our metric ansatz is b = 0.

6. Discussion and conclusions

In this paper we studied a simple two-dimensional toroidal background for string gas cos-

mology. We developed a way to incorporate long strings winding all internal directions.

Moduli stabilization was achieved, at the classical level, by these long strings carrying equal

winding and momentum charges without resorting to fluxes. At the quantum level we have

shown that in the presence of fluxes, the angle between the cycles, the only shape modulus

in this problem, is stabilized at a value which maximizes the area given fixed radii of the

torus. Meanwhile the flux also executes harmonic oscillation around its classical value. It is

already known that the combined action of string winding and momentum modes stabilizes

the ratio of the radii and the total volume. Hence, we have shown that, in this example,

– 9 –
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all moduli (except for the dilaton which we have to freeze by hand because there is only

Neveu-Schwarz flux in the problem) are stabilized. Our analysis is based on the solution

of the actual dynamical equations of motion rather that simply by a study of the static

effective potential.

We expect that our main conclusion-namely that in the context of string gas cosmology

all moduli modulo the dilaton can be stabilized dynamically-extends to more general back-

grounds. Note that we have chosen a special point of enhanced symmetry in our analysis.

There are other enhanced symmetry points (e.g. see discussion in [30]) — with different

winding and momentum numbers. We expect that our techniques can easily be generalized

to prove moduli stabilization in these cases, as well. We also expect that a more detailed

analysis of the action of branes in string gas cosmology will lead to ways to also stabilize

the dilaton. Work on these topics is in progress.

Phrased differently, our work indicates that the key ingredient missing in the low

energy effective field theory approach to moduli stabilization is the inclusion of string

winding modes.
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A. Energy of string gas

Here for completeness we present the standard method for obtaining the energy of a string

gas in the presence of flux (see e.g. [31]). The worldsheet action for the string is

L =
1

2

∫

d2σ
(√

hhabGMN + εabBMN

)

∂aX
M∂bX

N (A.1)

where M,N = 0, 1, . . . 9 run over all space-time dimensions and

h = hτσ hτσ − hττ hσσ . (A.2)

The generalized momenta are

ΠM =
δL

δẊM

=
√

h GMN (hττ ẊN + hτσX́N ) + BMNX́N , (A.3)

– 10 –
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where ∂τXm ≡ Ẋm and ∂σXm ≡ X́m. Now, solving for Ẋ

Ẋm =
Gmn

√
h hττ

(

Πn − BnpX́
p
)

− hτσ

hττ
X́m (A.4)

Eliminating Ẋ from the action, after a tedious computation, a simple answer emerges:

L =
1

2

∫

d2σ
1√

hhττ

(

Π2 − X́2 + X́mB p
m BpqX́

q
)

. (A.5)

Note that we have made use of (A.2) to eliminate hσσ . We then Legendre-transform to

arrive at the Hamiltonian

H = ΠmẊm − L

= Πm

( Gmn

√
hhττ

(Πn − BnpX́
p) − hτσ

hττ
X́m

)

− L

=
1

2
√

hhττ

[

Π2 + X́2 − 2ΠmGmnBnpX́
p

−2X́mBmnGnpBpqX́
q
]

− hτσ

hττ
Π · X́

(A.6)

The independent components of the worldsheet metric above play the role of Lagrange

multipliers, and thus a variation with respect to them gives the contraint equations:

0 = Π2 + X́2 − 2Πm Bmp X́p − 2X́mBmnGnpBpqX́
q (A.7)

0 = Π · X́ (A.8)

In order to get the physical spectrum we will introduce light-cone coordinates, X± =

(2)−1/2(X0 ± X1), which leaves us with D − 2 physical degrees of freedom. The first con-

straint in (A.7) allows us to obtain the energy, while the second expresses the longitudinal

coordinates in terms of transverse physical degrees of freedom. Fixing the gauge of the

world-sheet theory, namely hττ = −1, hσσ = 1, and hστ = 0 the canonical momenta (A.3)

become,

ΠM = pM − GMN ẊN + BMNX́N , (A.9)

In this paper we are interested in the effects of a string gas living on the compact torus

T 2. These directions correspond to the world-sheet fields Xm. The most general solution

respecting our background is given by

X± = x± +
1√
2

Eτ,

X2 = x2, X3 = x3,

Xm = xm + ωmσ + pmτ + oscillators, (A.10)

where nl and ωl are the momentum and winding numbers respectively, resulting from the

compactness of the torus and we define pm = Gmlnl − 2Bm
l ωl. Plugging this ansatz into
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the first constraint in (A.7) and making use of (A.9) one finds the expression for the energy,

E2 =

∫

2π

0

dσ[Gmnpmpn + GmnX́mX́n − 2pnBnpX́
p

+GnpBpqX́
qBnmX́m + N + Ñ − 2], (A.11)

where we integrate over the length of the string, assuming the energy is not localized.
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